

Development Standards & Practices Used
● AI / Machine Learning
● Cloud Development/Deployment
● Version Control via Git
● Clean Code practices and maintainability
● User Interface design with Figma
● Agile Development
● Sprint Planning - Determine next set of prioritized work

Summary of Requirements

● Model predicts allergic reaction accurately
● Model is deployed and available on a cloud platform
● Has clean user interface with wide-scale availability
● Simple to use: clients should be able to easily present data to the model and be returned a

result
● Backend can accurately process data from front-end

Applicable Courses from Iowa State University Curriculum
COM S/SE 309 - Software Development Practices: Comprehensive course in learning project
management, working in a team, and using Git.

DS 301 - Applied Data Modeling and Predictive Analysis: Teaches many machine learning
techniques that can be used to create the model.

COM S 319 - Construction of User Interfaces: Introduction to developing front-end user interfaces.

SE 422X - Cloud Computing Software Development: Introduction to cloud computing services and
how to deploy applications using them.

New Skills/Knowledge acquired that was not taught in courses
Working in a professional work environment that teaches agile workflow is beyond what formal
education usually covers. We also needed to learn about AI as most of our group has minimal
experience with AI development.

Table of Contents
1. Team 4

1.1. Team Members 4
1.2. Required Skill Sets for Your Project 4
1.3. Skill Sets covered by the Team 4
1.4. Project Management Roles 4

2. Introduction and Background 5
2.1. Problem Statement 5
2.2. Intended Users and Uses 5
2.3. Related Products and Literature 5

3. Revised Design 6
3.1. Requirements & Constraints 6
3.2. Design Complexity 6
3.3. Modern Engineering Tools 7
3.4. Design Decisions 7
3.5. Design 8

Front-End 8
Backend 8

3.6. Engineering Standards 8
3.7. Technology Considerations 9
3.8. Design Evolution 9

4. Implementation Details 10
4.1. Detailed Design 10

Front-end 10
Backend 10

4.2. Description of Functionality 11
Front-end 11
Backend 12

4.3. Notes on Implementation 12
5. Testing 13

5.1. Unit Testing 13
AI Model 13
Individual Cloud Functions 13
Front-end 13

5.2. Experimentation with Random Forests 13
Current Results with Random Forest 14

5.3. Integration Testing 15
5.4. System Testing 15
5.5. Acceptance Testing 16

6. Broader Contexts 16
6.1. Global 16

6.2. Economic 16
6.3. Environmental 17
6.4. Societal 17

7. Conclusion 17
7.1. Progress 17
7.2. Value of our Design 18
7.3. Future Steps for Development and Providing Value 18
7.4. References 18

8. Appendices 18
8.1. Appendix 1 - Operation Manual 18
8.2. Appendix 2 - Alternative/Initial version of the design 20

Initial Design 20
Functionality 21
Reasons for Change 21

Second Design 21
Front-End 22
Backend 22
Reasons for Change 22

8.3. Appendix 3 - Other considerations 22
8.4. Appendix 4 - Code 24

Table of Figures

Figure 1: Final Design of Project 10

Figure 2: Initial Front-end Client 13

Figure 3: Final Front-end Client 14

Figure 4: Ingredient Frequency Histogram 16

Figure 5: Front-End Demonstration 21

Figure 6: Successful Response Demonstration 22

Figure 7: Initial Project Design 22

Figure 8: Second Project Design 23

Table of Tables

Table 1: Random Forest Testing Results 16

Table 2: Random Forest vs Neural Network Metrics 18

Table 3: AWS vs GCP Comparison 19

Table 4: Extended Random Forest Testing 24

1. Team

1.1. TEAM MEMBERS

Ella Godfrey, Joseph Trembley, Noah Ross, Xerxes Tarman, Alex Ong

1.2. REQUIRED SKILL SETS FOR YOUR PROJECT

AI modeling: understanding of how to begin building out and testing the model

Front-end GUI: creating a user interface to interact with our model

Backend: sending and processing data from front-end, integrating model into function

Communication (within a team and with a client): ensures high intra-team collaboration and
understanding of requirements from client and advisor

Cloud computing: deploying front-end, backend, and model

1.3. SKILL SETS COVERED BY THE TEAM

Ella has experience with front-end development working for a company that focused on web
development.

Joseph is working on a minor in data science and has a basic understanding of machine
learning/AI modeling. He also has 6 summers of interning with a Java development team
working with backend applications and Amazon Web Services.

Noah Ross has 2 summers of experience developing User Interfaces on construction/agriculture
products. His strengths include human/product interactions and defining customer
wants/needs.

Xerxes has two summer internships working as an embedded software developer. He has
experience collaborating and working on an agile team.

Alex has two summer internships with one carrying into the school year part time. Between the
two internships, he contributed to both front-end and backend projects, giving a range of
full-stack industry experience. He has also built personal and ecommerce full-stack websites as
well.

1.4. PROJECT MANAGEMENT ROLES

Noah: Team Organization, covers creating team meetings and anything to do team wise

Joseph: Client Organization, sets meetings with the client and handles all emails between the
team and the client.

Ella: Minutes Taker, Records the minutes in a shared google doc.

Xerxes: Research, determines best technologies to complete the project

Alex: Quality Assurance, ensures all work meets requirements

2. Introduction and Background

2.1. PROBLEM STATEMENT

The goal of this project is to predict whether a patient would have an allergic reaction to a
medicine. It will use machine learning to make a decision based on factors about the individual
along with the medicine itself. This will allow for faster and easier tests, as the model will have a
rapid response time, and no additional patient information is required to run the model. In
addition, we built the system on Google Cloud Platform and Amazon Web Services to see if one
cloud provider has an advantage over the other.

2.2. INTENDED USERS AND USES

Some of our intended users are medical professionals, who could see if a patient might have an
allergic reaction to a medicine; patients themselves, who can enter their information and determine
if one of their medicines is causing allergic reactions; and medicine manufacturers, who can find
whether their upcoming medicine could cause widespread allergic reactions.

2.3. RELATED PRODUCTS AND LITERATURE

Allergen testing is already done, but it is mostly done on test animals and in some cases humans.
Monitoring skin pricks or digestive reactions to new products in animals like guinea pigs and
humans gives us most of our current insight into allergic reactions. Not much exists in predicting
allergic reactions like we are trying to do.

It is only in recent years where the idea of using artificial intelligence to predict any sort of medical
event has become popular. While some of these models exist, none seem to have gained a
large-scale adoption in the medical field. An article [1] published in August 2023 states that even
though artificial intelligence is not at the point where it can currently be used in the industry, it will
approach that point and is an overall benefit to healthcare.

We are not knowingly following in the footsteps of any other projects or programs as Machine
Learning is pretty new, and has yet to be widely adopted in the medical field.

The article [1] states that the biggest hurdles to overcome with creating an AI model that could be
used in the healthcare industry are the wide scale data requirements, lack of ability to see how the
model processes data, and difficulty in validating the model. In order for a machine learning model
to begin predicting data correctly, it will need a significant amount of data.

3. Revised Design

3.1. REQUIREMENTS & CONSTRAINTS

Backend Requirements:

● Backend can send data from front-end to model
● Backend validates data and ensures it follows correct formatting
● Backend can return results to front-end
● Predicts whether a patient would have an allergic reaction to a medicine
● Able to process large number of input variables

UI/front-end Requirements:

● Clear display of prediction and confidence level
● Location for user to upload information to test the model
● The remaining UI should be visibly appealing to the user
● Web accessibility from anywhere

Legal Requirements:

● Data usage does not violate any health privacy laws

Testing Requirements:

● The model should be tested for an overall accuracy percentage to report
● Each component has multiple iterations of tests for any type of error
● System has tests covering entire scope of the project
● Logs should be implemented to catch faults or errors

Maintainability Requirements:

● File structure should be clear
● Code should be well documented

3.2. DESIGN COMPLEXITY

Our final design consists of two major components: the front-end and the backend. The front-end
will be the interface seen directly by the user and requires a careful design to ensure users can
navigate it properly. The backend will be built using cloud functions to call off to the model and
return the result to the front-end. The model, as part of the backend, will create a prediction for
whether the patient has an allergy based on the input data received. Some of the applicable
principles are keeping the model secure, as well as creating a transparent view of how data is used.
Developing an ML model for our project presents a significant challenge as we strive to maintain
high accuracy. Since the model will be trained with a large dataset with many varying input types,
there may be numerous iterations before one begins to work as intended. Additionally, it is crucial
to create a robust testing suite to safeguard against overfitting the model. Since the model will be
hosted on a cloud-based platform, we will need to ensure that it can be accessed by anyone without
compromising the integrity of the system to follow artificial intelligence engineering principles.

3.3. MODERN ENGINEERING TOOLS

● Model Creation: Keras API
○ Keras serves as a high-level API for the TensorFlow machine learning library,

known for its emphasis on providing a fast and user-friendly interface for creating
production-ready ML models. We used this library to build out a model to test.

● Model Hosting: Cloud Providers
○ Since we needed to evaluate the performance of our model between Google Cloud

Platform and Amazon Web Services, we looked into both options for hosting the
different components to the web application. While they are different, they both
provide options to host our model and site, so our design was implemented in both
and compared.

● Model Workbook: Jupyter Notebook
○ Jupyter Notebook is a browser-based tool for developing and presenting data

science projects. It is specifically designed to visualize and execute Python code,
which is useful in developing machine learning models. Our group used Jupyter
Notebook as our primary development tool for our machine learning model. This
saved us from having to use overly complex systems to run the model training
code.

● Backend framework: Serverless functions
○ Serverless functions create small endpoints that can be used to set up an

infrequently accessed application. It is a great cost saver as the costs are based on
the time it takes to compute the calculations as opposed to a continually running
instance. Since this application should not be high-traffic, this was the optimal
method of running the backend.

● Front-end framework: React.js
○ React.js is a front-end JavaScript framework designed for building responsive

single-page web applications. We will be using this library to develop the user
interface for inputting data and displaying results from our ML model.

3.4. DESIGN DECISIONS

One of the major design decisions we needed to make in the project was choosing whether to use
Amazon Web Services or Google Cloud to use computing power and host our machine learning
model. To make this decision, we had to carefully compare the features offered by both such as
pricing, ease of use, and functional capabilities. After comparing them both by seeing available
resources and using our own experiences with them, we elected to choose Amazon Web Services as
our primary cloud platform for the project.

Another major decision we made was choosing which language to build our front-end with. We
chose to use React, since many of us have experience working with the language, and its flexibility
will be a great benefit to us as we implement our design.

The last major decision for the project was choosing how to create our backend. After some
thoughtful discussion, we decided that we wanted to use a cloud function which would call our
model and return the data back to the front-end. This method requires less coding overall, and it
allows us to build the backend using the same cloud platform as the machine learning model uses.

3.5. DESIGN

Figure 1: Final Design of Our Project With Respect to Both Cloud Providers

Front-End

The user interface of this design is a desktop web application. The user interface is responsible for
presenting a user-friendly interface for entering patient information along with relevant predictors.
Additionally, it facilitates the input and listing of skin conditions to be sent to the allergy prediction
model and returns the results to the user.

Backend

The back end handles all the operations of the program. Our backend architecture uses a singular
cloud function to handle validation and preprocessing of data, running the model prediction using
the data, and returning the results to the front-end. This is a significant change from our last
design, as we originally separated the model from the rest of the backend.

3.6. ENGINEERING STANDARDS

Since our project would take place in the medical field we should follow the IEC 62304 standard [2].
The IEC 62304 standard [2] specifies the life cycle for medical software devices such as risk
management, software requirement analysis, software system testing, etc.

IEEE 11073 [3] is the "Health informatics - Point-of-care medical device communication," this
provides a framework for compatibility between various medical devices and systems. It [3] defines

communication protocols and data formats for exchanging information between medical devices
and healthcare information systems, such as electronic health records or AI systems. When
developing an AI model for allergy prediction, adherence to this standard can facilitate easy
integration with other medical devices and systems, ensuring that relevant patient data can be
efficiently shared and utilized for accurate predictions and informed healthcare decisions.

IEEE 2801 [4] is a standard built around the management of data in medical artificial intelligence. It
[4] places a high emphasis on how data should be used and controlled once it has been gathered.
Following this will help us ensure that we are using data in an ethical manner.

The model will be built using Python, because this language supports a wide variety of libraries,
including ones with a focus on machine learning. One of the key libraries we will use is Keras,
which is used to create a neural network system to train models.

3.7. TECHNOLOGY CONSIDERATIONS

By automating the technical aspects typically handled by a medical professional, our project has the
potential to significantly decrease costs associated with drug prescription and development.
However, a major challenge we face is our heavy reliance on obtaining high-quality data for our
predictions.

One drawback associated with employing a machine learning model for allergic prediction is its
reliance on the quality of the training data. The model may encounter challenges with chemical
components that are not well-represented in our training dataset.

3.8. DESIGN EVOLUTION

As we continued to build out the application, we noticed that there were many aspects in our
original design that needed to be changed:

● Building our app on both cloud providers: when we reviewed the requirements of our
project, we realized that one of the aspects was to build a comparison between GCP and
AWS, meaning that we needed our design to work for both, even if the implementation
may be slightly different.

● Removal of SageMaker from AWS design: as we started working with SageMaker in our
project, we realized that it was overly complex for what we needed. We did some research
and found that most of what we use would work better as an addition to the cloud function
instead of separating them out.

● Removal of database: when we evaluated our requirements with those of engineering
standards, we decided that the database should not be included. Since we had planned on
putting the data that gets sent to our function there, there was the possibility of a HIPAA
violation. We determined it would be safer not to include that.

● Transference of front-end to cloud provider: in our original design, we intended to
communicate that the front-end is also a part of the cloud provider, but the schematic had
it listed on the client side.

4. Implementation Details

4.1. DETAILED DESIGN

Front-end

The front-end has a relatively simple design and tech stack. The client side portion of our
application was built using React JS, with styling assured by the CSS framework, Tailwind CSS.
The client is responsible for gathering patient information, which is bundled into a JSON
payload to fit the schema expected by our model comprising Gender, Birth Year, Fitzpatrick,
Skin Tone, and array of Skin Conditions. This payload is then sent off to the cloud functions to
input into our model, and then the client will display the prediction message contained within
the response body.

For hosting, we use two cloud providers, AWS and GCP. For both, we have elicited to store the
React application file as static content within the cloud object storage of both providers. On the
AWS side, we store the react app file within a S3 bucket, which provides its own url to the app.
Using this url, we can access the entire application relatively easily.

For GCP, it is slightly more complicated as we need to provide a .yaml file in order to run the
application via the object storage url. The .yaml file allows us to create an application via the
object from Google’s Cloud Storage.

Backend

The first step of making the backend was building out the model in Python. To do this, we had
to encode our training data so that the values were numbers that could be taken in by a neural
network. Most of our data was divided into two sections, the smaller categories and the larger
ones. The smaller categories used a process called one-hot encoding, where each possible value
was given a separate position, and used a 1 to denote the presence of that value, backfilling the
others with a 0. This is a common process, as it ensures that each value is uniquely stored and
does not affect the other parts of that category. The larger categories were processed through
text vectorization, where each individual value is given a numerical key. While not as efficient
as one-hot encoding, the vectorization allowed for multiple values in certain categories, which
was needed for the skin conditions.

After we made the data conversion, we had to build the model. Through many months of
refining and tweaking, we were able leverage Keras libraries to build a model that would take
the data in two sets, one where the order mattered, the one-hot encoded values, and one where
the order did not matter, the text vectorized values. Each was passed through a few hidden
layers before merging and outputting its predictions. These predictions were given a threshold
and put through a converter which transformed the binary values to their numeric
counterparts. Due to data and time constraints, we were only able to get predictions for the 10
most common allergies in the data set in our model.

When our model was complete, we exported it and the objects we used to encode the inputs
and outputs to a separate Python file. In that file, we added a method to preprocess incoming
data, pass the transformed data into the model, and return the result. To run this on the cloud
platforms, we packaged our source code along with certain dependencies in a Docker image
and uploaded it. From there, we build a cloud function on both GCP and AWS, citing our image
as the source code that should be used whenever the endpoint is reached.

4.2. DESCRIPTION OF FUNCTIONALITY

Front-end

The simple React client takes in basic patient information that the AI model expects. These
fields contain the Gender, Birth Year, Skin Tone, Fitzpatrick, and list of Skin Conditions.
Once the user wishes to view the prediction, the information is bundled into a JSON
payload, and sent off to the cloud function via POST request. The response will be a
prediction from the AI model which is in the form of Ingredient ids that may act as
potential allergens for the patient. This could either be empty or 1 to many different
allergen ids. As mentioned previously, the prediction is displayed as ingredient ids due to a
limitation of the provided data set. The ingredients were provided as a id only, with no
correlation or relation to any labels or names. With more data and labeled products or
ingredients, we could be more direct with the allergens.

The figures below showcase the initial design and final iteration of the user interface.

Figure 2: Initial iteration of the client, simple text fields with an established response from the cloud
functions.

Figure 3: Final iteration of the client. Restricted input fields and multi-selectable skin conditions. Upon
submission, a response from the backend and model is displayed

Backend

The backend endpoint is a simple function that receives request data from the front-end. After
getting the data, it uses various methods of encoding the data as numbers such as one-hot
encoding and text vectorization. This is necessary so that the data format matches what the
model was trained off of. After the encoding, the data is passed through a neural network,
which gives a prediction as to what allergies the patient has. These values are returned as a
response back to the front-end.

4.3. NOTES ON IMPLEMENTATION

Our implementation strategy focuses on ensuring data integrity, system reliability, and
compliance with regulatory standards. Robust data validation mechanisms have been
implemented on both the front end and backend to maintain the integrity of patient
information and ensure adherence to the required data format for the model input. Error
handling mechanisms are put in place to gracefully manage any issues that arise, with
comprehensive logging to capture faults or anomalies for effective troubleshooting. Security
measures include encryption during data transmission and compliance with health privacy laws
to safeguard patient information. Scalability considerations guided the design to accommodate
large volumes of input variables efficiently, with load balancing and horizontal scaling options
to handle increased demand. A thorough testing strategy was adopted, covering unit tests,
integration tests, and end-to-end tests to ensure system reliability and accuracy.

Documentation has been maintained to facilitate ease of maintenance and future
enhancements, following engineering standards to ensure compliance with medical device
regulations and ethical data usage practices.

5. Testing

5.1. UNIT TESTING

AI Model
To test the model, we created a split of our data between training and testing, and used several
k-folds (splits of the data using a different iteration of training and testing) to get good baselines for
the performance. When we tested the AI model, we found that accuracy was not a good baseline, as
we had many different results that could be returned. Instead, we focused on different metrics like
precision (the rate of true positives over marked positives), recall (true positives over all actual
positives) and F1 score (measure of precision and recall together). With these values, we were able
to see the actual behavior of our model. For example, an extremely high precision and low recall
indicated that the model was predicting almost no allergens, and the inverse indicated that it was
outputting a large number of allergens every time. Because they are looking for almost opposite
parts, creating a balance between these two metrics is a common problem in machine learning.

Individual Cloud Functions
On both AWS and GCP, we created multiple test cases to ensure it worked as intended. In both
iterations of the backend, we were able to use Postman to send requests and receive an accurate
response from each. For AWS specifically, there is a built-in method of using a test case directly
from the console using an input string. In our iterations for both of our cloud functions, we have
the functions working as intended.

Front-end
For our front end, we manually tested the inputs and ensured they did what they intended. The
React component itself needed little testing, as the changes show up visually, and the project won’t
compile with errors. We created a Postman endpoint to test the request functionality for the
Javascript JSON request from the React component to the backend. Once we communicated with a
Postman endpoint, we created a test AWS Lambda function to receive and send a response back
that the front end could display. This allowed us to test the ability of the front end to send and
receive from the model without actually going through the model. Once we established the model
worked on its own and the front end worked on its own, we changed the React component JSON
request to send the request to the model instead of the test Lambda function.

5.2. EXPERIMENTATION WITH RANDOM FORESTS

When analyzing the data, there was an extreme class imbalance with the 731 unique ingredients.
The histogram below shows the 300 most common ingredients in the dataset.

Figure 4: Histogram of the frequency of ingredients in our dataset.

The graph illustrates a clear imbalance with ingredients that appear, so we established a cutoff for
the number of ingredients we can predict given there is not enough data to proceed. After further
research and comparing multiple options, we decided that around 9 ingredients was the best
trade-off between the number of ingredients predicted, the F1 score for each ingredient, and the
time required to train and predict.

Current Results with Random Forest

Class Precision Recall F1-Score Support

0 0.36 0.52 0.42 664

1 0.28 0.58 0.38 456

2 0.25 0.56 0.34 426

3 0.19 0.54 0.29 328

4 0.14 0.53 0.23 249

5 0.14 0.47 0.22 276

6 0.11 0.44 0.18 225

7 0.15 0.56 0.23 235

8 0.12 0.54 0.20 218

Micro Avg 0.20 0.53 0.29 3077

Macro Avg 0.19 0.53 0.28 3077

Weighted Avg 0.23 0.53 0.31 3077

Samples Avg 0.19 0.40 0.23 3077

Table 1: Testing results for the Random Forest

Overall, based on experimentation with Random Forests, this technique offers a good baseline
model in addition to deep neural networks. Given our testing, if there is a sufficient sample of a
particular ingredient, our model is able to predict an individual's allergy to it fairly.

5.3. INTEGRATION TESTING

Once we connected our front-end to the backend, we tested how the system worked together. With
teams working from both sides of the path, we made sure that the front-end was correctly sending
requests and that the backend was receiving and processing them. There were minor differences in
the cloud platforms due to how their cloud platforms work, but both are able to connect to each
other.

5.4. SYSTEM TESTING

After the integration testing, we tested the system as a whole manually. We created a test plan based
on the expected functionality on both systems. On the front-end of the system, we used end-to-end
testing to test user interactions. For the backend we used Postman to validate the communication
between the front-end and backend.

In our development, we built out new components and tested them with the old components
before merging them to main to ensure functionality worked as intended at every stage.

On the ML side, since our model underwent multiple training iterations on the same data, we
aimed to prevent overfitting by employing a subset of the data for testing. This allowed us to assess
whether the model is overfitting or not. Our strategy to prevent overfitting was a notebook with
k-fold cross-validation. This enabled automatic assessment of whether the model is improving or

succumbing to overfitting for our dataset. Moreover, this method was useful in the beginning of our
project for selecting the ML approach that best suits our data.

5.5. ACCEPTANCE TESTING

After we built out our project, we compared the requirements of the project with our test results.
While there were some areas that did not exactly match, such as directly using accuracy for our
model, we determined that we had met the requirements with our work.

Because we had to change how we measured what constituted a good model, we needed to create a
new baseline. We evaluated the performance of the model by comparing it with a support vector
machine, an algorithm designed to separate between the different classifications we had. The
process is not how predictions are usually done in the medical field, but it has given us an idea of
what evaluation parameters demonstrate acceptable performance from our model. In that case, we
needed our precision to be greater than 0.25, our recall greater than 0.13, and our F1-score to be
greater than 0.17 to have a good model. Our final iteration of the model beats all of those metrics
by a clear margin, we had a precision score of 0.35, a recall score of 0.86, and an F1-score of 0.65.

Model Type Precision Recall F1-Score

Random Forest 0.20 0.53 0.29

Neural Network 0.35 0.86 0.65

Table 2: Comparison between our baseline SVMModel and our final Neural Network.

6. Broader Contexts

6.1. GLOBAL

With our project relying heavily on AI and sensitive patient information, we need to ensure that
data is secure and that our design follows HIPAA regulations as this can impact the Global,
Cultural, and Social areas. With the data being run through a third party library with Keras to create
and test the model, we made sure to verify the integrity of the program. In addition, we did not put
the data in a place where it could be compromised and removed any permanent data collection
from the design.

6.2. ECONOMIC

If our product is used by real medical professionals and facilities, an beneficial economic impact
could be the resources, time, and overall cost saved by being able to predict patient allergies faster
and more accurately. This would allow doctors to spend less time having to come up with the
diagnosis and reduce the chance of inaccurate diagnoses.

For our organization, some of the economic impacts to consider for us would be the third party
sources we use and if we need to cover any costs for the operations if they were to exceed the free
plans. Some examples are that cloud services such as AWS and Google Cloud support free services
up to a certain amount of bandwidth / requests. The same could be said for the Keras libraries and
is something we may have to consider if our design scales. The majority of the costs we incurred
were small charges that can be easily covered by users.

The model prevents the need for expensive allergy testing kits. Both cloud services provide free tiers
which should suit all of our request needs during development.

6.3. ENVIRONMENTAL

There was not much to consider outside of the energy and resources we need to consume to run our
servers and AI model. Since most of our services will be through the Cloud, the main environmental
considerations would be how much resources and energy is required to run our host machines. One
way that we have minimized the impact is restricting computing power and energy consumption
during the creation of the model.

6.4. SOCIETAL

Our project used AI in the cloud for allergy prediction. The main societal areas affected by our
design will be the Public health, safety, and welfare area. By creating a tool that allows medical
professionals to input patient data and symptoms, the goal of our design was to be able to predict
specific allergies a patient may have. This can help provide faster and more accurate results, while
reducing human error. This can lead to better treatment that benefits both the patient and medical
professional.

7. Conclusion

7.1. PROGRESS

We were able to complete our major objectives. As stated earlier in the testing, not only did we
make the model, but it had great metrics with a precision of 35% and a recall of 86%. Despite
this success, we were not able to get all of the possible allergens in our model, as we did not
have the time to make the model complex for all of them while maintaining our high metrics.
In addition, some of the allergies appeared much less frequently than the subset we selected,
making it difficult for the model to make its predictions.

We were able to run the service both on GCP and AWS, as well as evaluate the differences
between the two. Below is a comparison of the services based on some important metrics. The
cost is the approximate cost for how many times we have called the function, and the memory
usage is the approximate amount of memory it uses per request. Because cloud functions are
provisioned as-needed, we have two separate times listed for completion. The cold start time is
a request that is the first when the service is running, or the first if it has not been run in a
while. The warm start time is the time it completes after the service has been started, which is
often much faster.

Cloud Provider Cost Memory Usage Cold Start Time Warm Start
Time

GCP $0.02 > 512MB 11 seconds .6 seconds

AWS $0.00 700 MB 10 seconds .4 seconds

Table 3: Comparison between GCP and AWS as cloud providers

Based on the data above, we are choosing GCP as the better option for our use case. It is simpler
to use and provides greater transparency to the services being used and their costs. In addition,
the times to get a response were not that much different from each other, and the costs were
very similar.

7.2. VALUE OF OUR DESIGN

While our model does not fully capture all of the allergens like we intended at the beginning, it
shows what is possible. Our high precision and recall scores prove that using artificial
intelligence is a good way to make allergy predictions without needing the invasive technology.
It is not a perfect replacement, but it brings medical professionals closer to seeing the
connections causing allergic reactions before an individual has one.

7.3. FUTURE STEPS FOR DEVELOPMENT AND PROVIDING VALUE

The next step for the project is finding a way to integrate the other allergens back in. Because of
our time constraints, we were not able to get a model that would consistently get us accurate
results. If we had more time, we would go back and bring those values in so that our model
would be able to make better decisions. Once our model was able to predict any of the
allergens, we would spend more time refining it. What we have works, but it does not capture
all of the allergens like we would want it to.

7.4. REFERENCES

[1] M. van Breugel et al. “Current state and prospects of artificial intelligence in allergy”. Allergy.

2023; 78: 2623-2643. https://doi.org/10.1111/all.15849.

[2]Medical device software — Software life cycle processes, IEC Standard 62304, 2006.

[3] Health informatics–Device interoperability–Part 20601: Personal health device

communication–Application profile –Optimized exchange protocol, IEEE Standard 11073,
EMB/11073 - IEEE 11073 Standards Committee, 2022.

[4] IEEE Recommended Practice for the Quality Management of Datasets for Medical Artificial

Intelligence, IEEE Standard 2801, EMB/Stds Com - Standards Committee, 2022.

8. Appendices

8.1. APPENDIX 1 - OPERATION MANUAL

Since our application is a web-based app, there is no setup required. To test and demo the
application for yourself, follow the instructions below.

1. Follow the link to one of our applications.
a. App on AWS: http://seniordesignteam48.s3-website.us-east-2.amazonaws.com/
b. App on GCP: https://team-48-402621.uc.r.appspot.com/

https://doi.org/10.1111/all.15849
http://seniordesignteam48.s3-website.us-east-2.amazonaws.com/
https://team-48-402621.uc.r.appspot.com/

c. If neither of these links are live when you attempt this, view the screenshots in the
next steps

2. Enter your birth year, gender, skin tone, fitzpatrick skin phototype, and any skin conditions
to the best of your ability. Note that there is no account or linking of any personal
information to you. This is an intended advantage of our application that it only takes
non-personally-identifiable information in its predictions.

Figure 5: Demonstration of the front-end of the application.

3. Verify your information and click Submit.
4. Wait for the results to return. When they return, the results will appear in a small box like

shown below.

Figure 6: Demonstration of a successful prediction

8.2. APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF THE DESIGN

Initial Design

Figure 7: Initial design of the project with the React front-end, a backend utilizing cloud functions, and the prediction model.

The first portion of the design is the React front-end. It allows the user to enter the data and display
the prediction. This component does not need much itself but needs to connect to the backend,
which is possible with the given design. Since both the cloud function and model will be using the
same cloud platform for their operations, they are placed under the same category. We used Google
Cloud as a cloud provider option to illustrate how the data would flow. Within the cloud platform,
we have the cloud functions, the database, and the TPU service, a circuit designed for neural
networks.

Functionality

In this current design, the user enters data through the front-end to get a response. The data is
passed into the cloud, entering the cloud function, where the data is added to the database and sent
to the model. The model, which at this point has already been trained, looks at the data and makes
a prediction. The model sends its prediction to the cloud function. The function sends the data
back to the front-end and adds the prediction to the database where the data is stored. The
front-end displays the prediction to the user.

Reasons for Change

Our initial design did not correctly illustrate how the different components interact within the
cloud provider. We had not fleshed out how each of the different components would interact or
how we would build them out. We expanded on what these services were when we decided to
switch completely to AWS in the second design.

Second Design

Figure 8: Second design of the project, including specific services within AWS to be used in the project.

Front-End

The user interface of this design is a desktop web application. The user interface was responsible for
presenting a user-friendly interface for entering patient information along with relevant predictors.
Additionally, it facilitated the input and listing of skin conditions to be sent to the allergy prediction
model. The front-end handled the display of the prediction results generated by the model.

Backend

The back end played a crucial role in managing requests from the user-facing web application. This
involved updating a database to store patients' information and making prediction requests. Our
backend architecture comprised multiple AWS services. The front-end was stored and delivered
through an S3 bucket. The API, managed by AWS Cloud Functions, were responsible for forwarding
protection requests to our ML model, authenticating users, validating user input, and handling
database queries for storing user and patient information. Additionally, we planned to host our
prediction model using AWS SageMaker, ensuring accessibility through our Cloud Function.

Reasons for Change

Once we started developing the project, we realized that some of the components we had would not
work as intended. The biggest change was including both GCP and AWS as separate services while
building the project out on each. This is because part of the project is evaluating the costs of the
cloud and showing the differences, which was not part of the previous designs. In the time we
worked with AWS, we found that working with SageMaker proved to be more difficult than
intended. Since the backend was already using Python, we made the decision to combine the two
into a singular serverless function. We made the same change when we deployed the application to
GCP. Our last major change was removing the database and all related operations, because there
may have been possible HIPAA violations with storing the test and actual data in places of potential
security risk.

8.3. APPENDIX 3 - OTHER CONSIDERATIONS

Set Class Precision Recall F1-Score Support

Set 1 0 0.36 0.52 0.42 664

Set 1 1 0.28 0.58 0.38 456

Set 1 - Micro Avg 0.32 0.54 0.40

Set 1 - Macro
Avg 0.32 0.55 0.40

Set 1 - Weighted
Avg 0.33 0.54 0.40

Set 1 - Samples
Avg 0.23 0.26 0.23

Set Class Precision Recall F1-Score Support

Set 2 0 0.36 0.52 0.42 664

Set 2 1 0.28 0.58 0.38 456

Set 2 2 0.25 0.56 0.34 426

Set 2 3 0.19 0.54 0.29 328

Set 2 - Micro Avg 0.27 0.55 0.36

Set 2 - Macro
Avg 0.27 0.55 0.36

Set 2 - Weighted
Avg 0.29 0.55 0.37

Set 2 - Samples
Avg 0.25 0.34 0.26

Set 3 0 0.36 0.52 0.42 664

Set 3 1 0.28 0.58 0.38 456

Set 3 2 0.25 0.56 0.34 426

Set 3 3 0.19 0.54 0.29 328

Set 3 4 0.14 0.53 0.23 249

Set 3 5 0.14 0.47 0.22 276

Set 3 6 0.11 0.44 0.18 225

Set 3 7 0.15 0.56 0.23 235

Set 3 8 0.12 0.54 0.20 218

Set 3 - Micro Avg 0.20 0.53 0.29

Set 3 - Macro
Avg 0.19 0.53 0.28

Set 3 - Weighted
Avg 0.23 0.53 0.31

Set 3 - Samples
Avg 0.19 0.40 0.23

Table 4: Extended testing of the Random Forest model

8.4. APPENDIX 4 - CODE

Our source code can be found at a GitHub repository here:
https://github.com/trembleyjr/senior_design_may24-48

